

Microscopía de Rayos X: Principios y Aplicaciones

Gema Martínez Criado Línea de Luz ID22 - ESRF 28 Octubre 2010

gmartine@esrf.fr

Indice

- Principios: microscopía de rayos X
 - ° Introducción
 - ^o Radiación Sinctrotrón
 - Propiedades Rayos X

• Instrumentación: técnicas microscópicas

- Optica de Rayos X
- Estrategias de Nanofocalización
- ^o Microscopios de Rayos X: modos de operación

Aplicaciones

ULTRA – PEQUEÑO

ULTRA – RAPIDO

Introducción: Comparación de Microscopías

Principios

Radiación Sincrotrón: Ventajas

Principios

GM1 Ventajas: Muy intenso, Colimación angular,Haz coherente y polarizado,Energía sintonizable Desventajas:Daños por radiación,Falta resolución atómica

Gema Martinez-Criado; 30/09/2008

Principios

Permite análisis por microscopía de rayos X mayor emitancia, mayor demagnificación

8 - 9 µm

(infrarrojo)

3.3 mm

Principios

0.4 - 0.7 μm

(visible)

0.025 nm (rayos X)

0.35 - 0.38

μm (UV)

Propiedades de los Rayos X: Interacción Radiación - Materia

GM2

GM2 Ventajas: Muy intenso, Colimación angular,Haz coherente y polarizado,Energía sintonizable Desventajas:Daños por radiación,Falta resolución atómica

Gema Martinez-Criado; 30/09/2008

n < 1

$$\int \mathbf{E} = \mathbf{E}_{0} e^{-i(\omega t - \mathbf{k}\mathbf{r})} \qquad |\mathbf{k}| = k = \frac{\omega}{c} n \qquad n = 1 - \delta + i\beta$$

$$\int \mathbf{E} = \mathbf{E}_{0} e^{-i(\omega t - \mathbf{k}\mathbf{r})} \qquad |\mathbf{k}| = k = \frac{\omega}{c} n \qquad n = 1 - \delta + i\beta$$

$$\int \mathbf{e}^{\mathbf{k}} = \frac{n_{a} r_{e} \lambda^{2}}{2\pi} f_{1}^{0}(\omega)$$

$$\int \mathbf{e}^{\mathbf{k}} = \frac{n_{a} r_{e} \lambda^{2}}{2\pi} f_{2}^{0}(\omega)$$

$$\int \mu = (4\pi/\lambda)\beta$$

$$\eta = (2\pi/\lambda)\delta$$

$$\delta \sim 10^{-5} \Rightarrow n \sim 10^{-5}$$

$$\int \mathbf{E} = \mathbf{E}_{0} e^{-i(\omega t - \mathbf{k}\mathbf{r})} \qquad \mathbf{e}^{-i(2\pi\frac{\delta}{\lambda})r} = \frac{e^{-i(2\pi\frac{\delta}{\lambda})r}}{absorption}$$

Mecanismos de contraste: absorción / fase

 $\theta_1 = \theta_c \to \theta_2 = 90^\circ$

low reflectivity except at grazing angles (i.e., θ small)

R: distancia fuente – muestra*D*: tamaño de la fuente

Ejemplo: E=10 keV, λ =1.2398 Å, D= 30 μ m, R=30m, $\Delta\lambda/\lambda$ =10⁻⁴ $\rightarrow L_T$ = 62 μ m

ABSORCIÓN FOTOELÉCTRICA

AUGER **ELECTRON**

- Energía de excitación excede la energía de ionización
- <u>Procesos de relajación</u> \rightarrow

FLUORESCENCIA DE RAYOS X

Principios

Mecanismos de contraste: XRF, XAS, XRD, XPEEM, XLD, XEOL, ...

Indice

- Principios: microscopía de rayos X
 - ° Introducción
 - ^o Radiación Sincrotrón
 - ° Propiedades de los Rayos X

• Instrumentación: técnicas microscópicas

- Optica de Rayos X
- Estrategias de Nanofocalización
- ^o Microscopios de Rayos X: modos de operación

Aplicaciones

La emitancia del haz de electrones es una constante a lo largo de su órbita

 $\varepsilon_z = \sigma_z \sigma'_z = cte$

• Focalización del haz \rightarrow

Menor tamaño del haz, mayor divergencia Espacio de fase

Área elipse constante

Valores típicos (v):

○ Colimación →

Menor divergencia del haz, mayor tamaño

Debido a la absorción y la eficiencia de los elementos de la línea de luz, la densidad de fotones en el espacio de fase disminuye μrad 10 10μm

Haz de electrones en z

Haz de fotones en z

Optica de Rayos X: Línea de Luz

Instrumentación

Cuando $|q| \gg |p|$, a *p* se le llama la longitud focal de la lente o longitud focal objeto *f*

Optica de Rayos X: Refracción

Ventajas:

- Resolución (sub)micrométrica
- Amplio rango energético: 5-40 keV
- Fácil de alinear/operar/fabricar (costo)
- Estable bajo intensa carga térmica

Desventajas:

- Pequeña apertura limitada por R (limita el flujo)
- Lentes (Li,Be,C,AI) cromáticas
- Poca focalización (múltiples lentes)
- Baja eficiencia transmisión

Optica de Rayos X: Difracción

Ventajas:

- Resolución nanométrica (100nm Δr)
- Rango energético: 250 eV 15 keV
- Fácil de alinear/operar

Desventajas:

- Lentes (Au,Ge,Ni on Si,SiN) cromáticas
- Distancia de trabajo corta (mm)
- Apertura limitada por R (poco flujo)
- Baja eficiencia (10% 1er orden difracción)

Ventajas:

- Aberraciones despreciables
- Lente acromática
- Alta eficiencia
- Filtro de altos armónicos

Desventajas:

- Resolución limitada por vibraciones
- Angulo de trabajo crítico muy pequeño
- Sufre inestabilidades térmicas
- Muy sensible a la calidad/pulido de los espejos

Optica de Rayos X: otros

Nanofocalización - CRL

Instrumentación

Lentes Cruzadas de Si

Schroer (DESY), Lengeler (Aachen) et al. PRL 94, 054802 (2005)

Instrumentación

W. Chao et al., Nature 435, 1210 (2005)

Nanofocalización - FZP

Instrumentación

H.C. Kang et al., PRL 96, 127401 (2006)

Espejos - configuración Kirkpatrick-Baez - ID22NI

			DIEDACCION	DEEDAGCION		
		REFLE	DIFRACCION	REFRACCION		
					Lentes Zonales	
	Sistema Kirkpatrick-Baez		Capilares	Guías de Onda	de Fresnel	Lentes Refractivas
	Espejos K. & Baez, 1948	Multicapas Barbee, 1986	Kreger, 1948	Feng, 1993	Baez, 1952	Snigirev, 1986
					$\langle \rangle$	<u> </u>
E	<30 keV	<80keV	<20keV	<20keV	<30keV (80)	<1MeV
∆E/E	Ancho de Banda Amplio	10 ⁻²	Ancho de Banda Amplio	10 ⁻³	10 ⁻³	10 ⁻³
Resolución	<mark>25 nm</mark> (15keV)	<mark>41 x 45nm²</mark> (24 keV)	50 nm	40 x 25 nm ²	<mark>30nm</mark> (20 keV) 15nm (<1keV)	50nm (20keV) 150nm (50keV)
	Mimura (2006)	Hignette (2005)	Bilderback (1994)	Salditt (2004)	Kang (2006)	Schroer (2004) Snigirev (2006)
Eficiencia	+++	+++			++	+
Dimensión	+++	+++	+++	+++	+++	+++
Acromática	SI	NO	SI	NO	NO	NO
Coherencia	+	+	+/-	+++	++	+/-
Foc en-línea	NO	NO	SI	SI	SI	SI
Dist.F. Larga	SI	SI	NO	NO	SI	SI
Complejidad	+/-	+/-	++	+/-	++	++

Otras estrategias de focalización

20x100nm²

Microscopios de Rayos X

Instrumentación

TYPE OF MICROSCOPE	ENERGY	MODE OF CONTRAST	OPTICS	RESOLUTION				
	(keV)			(nm)				
Full field Microscopy								
Micro-radiography								
Contact	> 0.5	Absorption	-	100 - 1000				
In-line imaging	> 1	Absorption/phase, XAS	-	500 - 1000				
Magnified Projection (no optics)	> 1	Absorption/phase	-	100 - 500				
Soft X-ray Microscopy	< 4	Amplitude/phase, XAS	FZP	20 - 50				
Hard X-ray Microscopy	> 4	Amplitude/phase, XAS	FZP, CRL	100 - 500				
Scanning Microscopy								
Soft X-ray Microscopy	< 4	Absorption, XRF, XAS, XPEEM	FZP	20 - 50				
Hard X-ray Microprobe	> 4	Absorption, XRF, XAS, XRD	FZP, CRL, KB	100 - 1000				

Instrumentación

Full-field X-ray microscope

Scanning X-ray microscope

Ventajas:

- Rápido y eficaz para tomografía
- ➢Instrumentación relativ. simple
- Mayor resolución espacial

Desventajas:

Dosis ineficienteSólo se detecta haz transmitido

Ventajas:

Dosis eficiente

- >Múltiple detección en paralelo
- >Aplicable a material volumétrico

Desventajas:

Técnica lentaInstrumentación compleja

Microscopios de Rayos X: In-situ

Instrumentación

Indice

- Principios: microscopía de rayos X
 - ° Introducción
 - ^o Radiación Sincrotrón
 - ° Propiedades de los Rayos X
- Instrumentación: técnicas microscópicas
 - ° Optica de Rayos X
 - ^o Estrategias de Nanofocalización
 - ^o Microscopios de Rayos X: modos de operación

Aplicaciones

Hierro: Localización en la semilla de Arabidopsis: transportador vacuolar

Arabidopsis

Science 314. pp. 1295 - 1298 (2006) by Kim et al

Medicina

Análisis elemental y redox de células bacterianas

Aplicaciones

Microscopía tomográfica de fósiles embrionarios

Nature 442. pp. 680-683 (2006) by Donoghue et al

Aplicaciones

Composicion elemental - cometa 81P/Wild 2 - STARDUST

Medicina

Aplicaciones

Hierro - Enfermedad de Parkinson

Medicina

Aplicaciones

Estroncio - Agente terapeutico en la osteoporosis

XRS 36, pp. 42-49 (2007) by Oste et al

1,4

1,2

0,8

0,6

0,4

0,2

5,960

Normalised Fluorescence (a. u.)

Medicina

Energy (eV)

CRT 18, pp. 1512-1519 (2005) by Ortega et al

Cr (VI) - Agente carcinogeno para las vias respiratorias

Ciencia Ambiental

Aplicaciones

Uranio Empobrecido - Chernobyl

JER 64, pp. 167-173 (2003) by Salbu *et al*

Microelectrónica

Aplicaciones

ULSI - Ultra Large Scale Integration

Numero de componentes: Igual o superior a 100 000

ME 83, pp. 1043-1046 (2006) by Neuhausler *et al*

amplitude contras

1.0 1.5 position on sample [µm]

0.5

300

[100 250] 200 200

150 100

50

0.0

Medicina

Aplicaciones

Calcio – pelo del cuero cabelludo

The structure of the hair bulb

BBA 1619, pp. 53-58 (2003) by Merigoux et al

Aplicaciones

Sb, Hg – Vincent van Gogh

AC 80, pp. 6436-6442 (2008) by Dik et al

Patch of Grass (1887)

 Ciencia de Materiales

 RIF
 Ciencia de Materiales

 RIF
 Weilun Chao et al. – NATURE 2005

 Source
 Condenser
 Objective

 Source
 Condenser
 Objective

s-linked polym Condenser **Stoh resistant** SigN₄ zone plate plating base mirror Pinhale ALS Bending Magnet Misre zene 3. Cryogenic ICP Etch 4. Plate Soft x-ray sensitive plate CCD Si₃N₄ **Fresnel Zone Plates** (Cr/Au on Si) 5. Strip Resist 6. Strip Si₃N₄ and Cr/Au Plating Base non \$isN4 **Advanced Light Source** Microscopía de images of test object with a 18.5-mm lines and spaces rayos X blandos $\delta_m = 1.22 \frac{\Delta r}{m}$ т $f_m = \frac{D\,\Delta r}{m\,\lambda}$ Resolución espacial nanométrica

Aplicaciones

2. Develop

25-nm micro sone plate

(15nm)

15-n m micro sone plate

Ciencia Ambiental

Aplicaciones

Ciencia de Materiales

Aplicaciones

Bibliografía:

- "Elements of Modern X-ray Physics" Jens Als-Nielsen, Des McMorrow
- "X-Ray Microscopy" Graeme R. Morrison
- "Lectures on the x-ray microscope" W.C. Nixon
- "Microscopic X-Ray Fluorescence Analysis" *Koen H.A. Janssens, Freddy C. V. Adams*
- "Handbook of X-Ray Spectrometry Revised and Expanded" (Practical Spectroscopy, V. 29) *R. Van Grieken, Andrzej A. Markowicz, Rene E. Van Grieken*
- "X-Ray Microscopy in Biology and Medicine" *Kunjo Shinohara Keiji Yada*
- "X-Ray Microscopy: Instrumentation and Biological Applications" *Ping-Chin Cheng, Gwo-Jen Jan*